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Abstract: In this paper, singularly perturbed nonlinear differential/algebraic equations
(DAEs) are considered and a proof of the existence and uniqueness of a solution is given.
Asymptotic expansions for such a solution are obtained and proved to be uniformly conver-
gent. This generalizes known results about asymptotic expansions of singularly perturbed
ordinary differential equations.
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1. Introduction

We consider the asymptotic behavior of solutions of a singularly perturbed DAE of the
form
' = fl(zvy1zve)
ey’ = falz,y,2,¢) (1.1a)
0= fa(z,y,2,¢)

together with the initial conditions
z(0,€) = £(e), y(0,¢€) = n(e), 2(076) = C(e) (llb)

where € R™, y € R*, z € Rfandee R. It might be expected that the theorems
developed for singularly perturbed ODEs can be used to study the singularly perturbed DAE
(1.1). For this it would be natural to apply a standard index reduction to (1.1a,b); that is
to reduce (1.1a,b) to a singularly perturbed ODE by differentiating the constraint equation
fa(x(t, €}, y(t, €),2(4,€),e) = 0 with respect to t along any solution (x(t,¢), y(t,€), z(t,€))
of (1.1a,b). Then by applying the known theory for singularly perturbed ODE’s (see [Ho]
or [OM2]), we might expect to obtain the desired results for the singularly perturbed DAE

* This work was supported in part by ONR-grant N-00014-90-J-1025, and NSF-grant CCR-
9203488.




(1.1a,b). But this is not the case. In fact, by differentiating the constraint equation in the

system (1.1a,b) with respect to t along the solution (z(t, €), y(¢, €), z(t, €)), we obtain

7' = filx,y,z,¢€),
ey’ = falx,y,2,6),
ez' = —(D,fs(x,y,z,€)) " HeD, falz,y, z, ) filz,y, 7, €), (1.2)
+ Dy fslz,y,z,€) falz,y, 2, €)),
x(0,€) = §(e), y(0,€) =n(e), 2(0,€) = ((e).

For € = 0, the reduced problem for {1.2) then has the form:

7' = filz,y,2,0),
0= fu(z,y,2,0), (1.3)
z(0) = £(0).
This reduced system has lost & constraint conditions which means that the assumptions of the

theorems in {Ho] or [OM2] for singularly perturbed ODEs are not satisfied. Therefore, we have
to study the singularly perturbed DAE (1.1) directly.

Under certain assumptions, we prove that (1.1a,b) has a unique solution on the interval
[0,T] for all small €, for which asymptotic expansions have been obtained and proved to be
convergent uniformly in [0, 7).

As background for the presentation, Chapter 2 below presents a summary of some known
existence results for DAE’s, which can be applied to (1.1) and its reduced system.

Chapter 3 addresses the limiting problems in which the reduced problem and the inner
and onter problems for (1.1) are introduced, and the regular degeration of (1.1) is defined as
well.

While asymptotic expansions and existence of the outer solutions are considered in Chapter

4 and 5, respectively, inner solutions of (1.1) are studied in Chapter 6 and 7.

2. Background on DAE’s
To ensure the existence of solutions of (1.1), we impose the following assumption on the
system

Assumption (I): There are non-empty open sets D, C R™, D, C R*, D, C R* and J, C
RY Je={¢€]|le] <€, ¢ >0}, such that the mappings fi : D x J, — R™, f, : D x J. — R",
fi:DxJ, — RF 61 Te -+ Deyn:iJe > Dyand(: J, — D, where D =D, x Dy x D, are
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continuous on the indicated domains. Moreover for fixed € € Je, f1, f2, f3 are of class C* on
D and the initial point (£(€), n(e), ((€)) satisfies the compatibility condition

fa(é(e),n(€),{(e), ) = 0.

Finally, assume that fa(z,y,2,0) # 0 and f3(z,y,2,0) £ 0 in the domain D, and that the
Jacobian matrix

D f3(€0,70, 0, 0) (2.1)

is nonsingular, where & = £(0), ng = 1(0), (o = {(0).

The infinite differentiability of f;, f2, f3 is assumed here only for the sake of simplicity.
We are interested in the existence of solutions of (1.1a,b) on some interval [0, T} where T is
independent of ¢, and with the asymptotic behavior of the solutions of (1.1a,b) as € tends to
zero. For these asymptotic considerations some further conditions will be needed which will
be stated in the next subsection.

For the existence of solutions of (1.1a,b) the condition (2.1) in Assumption (I) ensures the
solvability of (1.1a,b). Indeed, from (2.1) it follows that there exists an € > 0 (¢’ € J,) such
that

D. f3(€(e)yn(e), C(e)ye)
is nonsingular for any fixed €, 0 < € < ¢ . This implies that the system (1.1a,b) is a DAE of
index one in some neighborhood of (£(e), n(e}, C(€)).

The existence and uniqueness of a solution of (1.1a,b) will be based on the following
existence theorem for the solutions of initial value problem of the form:

u' = Fl(uv U)y
0 = Fy(u,v), (2.2)
u(0) = up, v(0) = vo,

Proposition 2.1: Suppose that the mappings F; : D, xD, C R™** = R" and F5 : D, xD,, C
R™* - R® are of class C? on their domains where D, C R" and D, C R® are non-empty open
sets, and that the initial point (ug,v0) € D, x D, satisfles

Fy(ug,v0) =0,

and the Jacobian matrix

D, Fa(ug,v0)
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is nonsingular. Then there exists a C'-solution (u(t),v(t)} € Dy x D, of (2.2) which is unique
on some interval [0, Ty], To > 0. Moreover, the component u(t) is of class C* on [0, Tp].

Proof: The result is a consequence of the existence theorem for DAEs of the formn (2.2) given
in sce [R14]. g

By applying Proposition 1.1 to (1.1a,b), we obtain the following existence theorem:

Proposition 2.2: Undcr assumption (I), for any fixed ¢ > 0 (e < ¢ € J.), there exists a
unique solution (z(t,€),y(t,€),z(t,€)) for the DAE (1.1a,b) on some interval {0, T.], where T,

depends on e.

3. The boundary problems

In order to study the asymptotic behavior of solutions of (1.1), we formally set € = 0 in
(1.1a) and remove the initial conditions for y and z, and then obtain the system

Xy = f1(Xo,Ys, Z0,0),
0 = f2(Xo,Yy, Zo.0), (3.1a)
0 = f3(Xo, Y5, Z,0),

with which we associate initial conditions of the form
Xo(0) =&, Yo(0) =Yy, Zo(0)= 2. (3.1b)

Thus we obtain from Proposition 1.2 the existence result:
Proposition 3.1: Under assumption (I) let (£&,Y?, Z0) € D, & = £(0), be a point such that

falbo, Yoov Z(())vo) =0,

fJ(EOv }’OU’ Z((,’,O) =0

and that the matrices
D, f3(&. Y7, Z3,0) (3.2a)
B® =D, fi(%. Yy, 25,0)

= D.fo(€0, ¥, 22,0) (D, fa( €0, ¥, 28,0)) D, fs(£0, Yy, 25,0)

are nonsingular. Then the system (3.1) has a unique solution (Xo(t), Yo(t), Zo(t)) € D on
some interval {0,T], which satisfies the initial condition (3.1b). Moreover, for t € [0,T) the
matrices

(3.2b)

D. fs(Xo(1), Yo(t), Zo(t),0), (3:3a)
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B(t) =D, fa(€o, Yo(t), Zo(t),0) — D, fo(€o, Yo(t), Zo(t),0) (3.3%)
(D:fs(60, Yo(t), Z0(t),0) ™" Dy fa(bo, Yo(t), Zo(1),0) ‘
are nonsingular.

Proof: Since the matrices (3.2a/b) are nonsingular, there exists a neighborhood Os C D of
the point (&, Yy, Z9) such that for all (z,y,2) € O5 the matrices

sz3(17 y,Z,O),

D!lf2(zvy1zi0) —szz(x,y,z,O)(D,ﬁ(z,y,z,O))_] Dyf3(zvy‘zao)

are nonsingular. This implies that the Jacobian matrix

Dy fo(z,y,2,0) D, folx,y,2,0)
(DZfs(z,y,z,O) D,fs(z,y,z,m) (34)

is nonsingular in Oy, as follows directly from the identity

(Dyfz szz)
Dyfs D.fs

=(Im D,fz(D,fs)-‘)(Dyfz—D,fz(D,fs)“D,,fs 0 )
0 Iixk Dny D:fJ '

Then a direct application of the Proposition 2.1 to the system (3.1a/b) shows that this system
has a unique solution (Xo(t),Ys(t), Zo(t)) € Os € D on some interval [0,T]. Since for all
t € [0, 7], the solution (Xo(t), Yo(t), Zo(t)) remains in Os, the matrices

D. f3(Xo(t),Yo(t), Zo(t),0) and B(t)

are nonsingular for all t € [0,T]. g

Our aim will be to determine when there arc solutions of (1.1) that converge for € — 0 to
a solution of the reduced system (3.1). For this we introduce the following concept:

Definition 3.1: The system (1.1a,b) is said to degenerate regularly on the solution (Xy(t),
Yo(t), Zo(t)) of (3.1), 0 <t < T, if a solution (z(t,€),y(t,€), 2(t,¢€)) of (1.1) exists on the same
interval 0 < ¢ < T, which converges to (Xo(t),Yo(t),Zo(t)) as € — 0, uniformly on compact
subsets of 0 <t < T.

The structure of regularly degenerating solution of (1.1a,b) is determined by replacing
problem (1.1a,b) by two auxiliary problems; the first of these is called the outer problem, and
the second one the inner problem.




The critical idea is here to consider (1.1a) with only an intial condition for r but with the

explicit assumption that only solutions are admitted which for € = 0 reduce to a solution of
(8.1). In other words, we consider the problem:

X'= (XY, Z),
¥ = (XY, Z,¢), (3.5a)
0= f3(X,Y,2,¢),

with some initial condition

X(0,€) = €"(e) (3.56)

and the limiting assumption
X(t,0) = Xo(t), Y(,0) = Yy(t), Z(£,0) = Zy(t) (3.5¢)

where (Xo(2), Yo(t), Zo(t)) is a solution of (3.1).
Any solution of (3.5a,b,c) will be called an outer solution. With any such outer solution
(X(t,€),Y(t,€), Z(t,€)) we introduce in (1.1a) the scaled variable

T=1fe (3.6a)

and new dependent functions

a(r,€) = z(er,€) — X(er,¢€)
B(r,€) =yler,e) ~ Y(er,¢) (3.6b)
Y(r,€) = 2(eT,€) — Z(eT,€)

Let (z(t,¢),y(t,€), 2(,€)) be a solution of (1.1a,h), then we find that (a, B,7) satisfies the
following DAE, whicl is called the boundary layer problem or inner problem:

d .
o =chilera,8,7,0),
df -
% = faler,a,B,7,¢), (3.7a)
0= fs(er,a,8,7,¢),
a(0,€) = E(e) ~ £*(€), B(0,€) = n(e) = ¥'(0,¢), 7(0,€) = ((€) — Z(0,€)

where

filt,a,B,7,€) = fila + X(,0, 8+ Y(t,6), 7 + Z(t,€),€)

(3.76)
— (Xt e, Yt €), Z(t,e)e), i=1,23

To study the asymptotic behavior of solutions of (1.1), we need following assumption
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Assumption (II): The components of the initial point (£(¢),n(e),((¢)) possess asymptotic
expansions :

o)~ Y &, nle) ~ Y mieh, (&)~ D Gl ase— 0. (3.8)
=0 =0

i=0

4. Asymptotic expansions of outer solutions

For the analysis of the solutions of (3.5a,b) and (3.7a,b) and their interrelationship, asymp-
totic considerations are to be used. We motivate here briefly the approach and defer proofs to
the next subsection. Suppose that the initial function £*(¢) of (3.5b) satisfics

)~ b+ &, ase—, (4.10)
i=1

and accordingly that any outer solution (X(t,¢€),Y(¢,¢), Z(¢,¢)) has a formal asymptotic ex-
pansion in terms of €

N
X(te)=Y Xit)e +0(M) ase—0
;;o
Y(te)= Y Yi(t)e + O(eN*) ase—0 (4.18)

N
Z(t,€) = Z Zi(t)e + O(eN*Y)  ase— 0,

=0

which is assumed to hold uniformly for 0 <t < T,0< e < € (g < €').

Inserting (4.1b) into the equation (3.5a), expanding the right side functions at the point
(Xo(2),Yo(2), Zo(t),0) and equating coefficients of cqual powers of €, we obtain that the first
term (Xo(t), Yo(t), Zo(t)) must be a solution of the reduced problem (3.1a.b) while the higher
terms (X,(t), Y:(t), Z-(%)), r = 1,..., N in (4.1b) must satisfy a linear DAE of the form

d:;ir = fiz(OX, + fly(t)YT + fi:(8)Z- +Pr(t)1
dlt/irt—l = foe ()X e + fo ()Ys + foo ()2, + g,(2), (4.2)r
0 = faz () Xr + foy()Yr + f5:(2) 20 + 7e(2),
Xr(O) = E:’




where

Fis(t) = Do fil Xo(t), Ya(t), Zo(1), 0),
Fis(t) = Dy fi(Xolt), Ya(t), Zo(t), 0), i=1,23  (43)
fist) = D. i Xo(t), Yolt), Zo(1),0),

and the terms p.(t),¢,(t) and r.(t) are polynomials in X,,Y;, Z, ..., X,_,, Y, 4,2, for
which the coefficients are higher derivatives of the functions fi, f2, f3 at the point (Xq(t),
Yo(t), Zo(),0). The right side £ of the initial condition is the corresponding coefficient in
the asymptotic expansion of £*(e) and p,, ¢, and r,, r = 0,1,..., N, are obtained recursively.
Therefore, (pr(t),¢-(t),r+(t)) is well defined on the interval 0 < t < T if the previous terms,
X1, Y1, 21,0y, Xvo1, Yioy, Zr-y, are well defined on [0, T]. A comparison of (4.2), shows that,
formally, all coefficient functions satisfy a linear system of the form

((11_:; =an(t)r + az(t)y + arz(t)z + by (t),
= an(t)z + an(t)y + ax(t)z + bu(t), (4.4)
0= a3, (t)7 + ag(t)y + ass(t)z + ba(t),
z(0) = ¢,

for which

(a) a,j, b; are continuous on [0, T);

(b) the matrix
_ [ an(t) ax(t)
Ait) = (aaz(f) asa(f))

is nonsingular for ¢ € [0, T).

For such systems we obtain from Proposition 2.1 the existence result:

Proposition 4.1: Under the assumptions (a) and (b) the system (4.4) has exactly one solution
(2(t),y(t), 2(t)) defined on the interval [0, T).

Proof: By assumption (b) we can solve the second and third equations in (4.4) for (y,z) in
terms of & substitute into the first equation in (4.4). Thus, we obtain an initial value problem
for a linear ODE. Then applying the basic existence theory for ODE's (sec Theorem 5.2 in
[CoLe]) we know that the system (4.4) possesses a unique solution. g

Since the informal expansion procedure provides that p,(t),¢.(t),r.(t) are polynomials
in X0,Y1,2,, .., Xeo1(t), Yooa(t), Zo—1(t) with the coefficients depending on (X,(2), Yo(t),
Zo(t)), we can verify easily that the conditions (a) and (b) for the linear system (4.4) will hold
for all systems (4.2),, 7 =1,...,N. Then by applying Proposition 2.1 to these systems (4.2),,
we obtain the following existence theorem:




Proposition 4.2: If the conditions in Proposition 3.1 hold then each system (4.2),, r =
1,..., N, with any given value of £, has a unique solution (X(t),Y:(t), Z.(t)) defined on the
domain [0, T] of (Xo(t), Yo(2), Zo(2))-

Proof: For any r, 1 <r < N, the coefficient matrix in the system (4.2), ,

(fzy(t) fzz(t))
f3y(t) f3:(t) ’

is nonsingular for all ¢ € [0, 7] due to the nonsingularity of B(t). Hence by Proposition 4.1, we
find that the system (4.2), has a unique solution defined on the interval [0,T]. 1§

Note that, although the sequence of systems (4.2), is derived formally under the hypothesis
that their solutions (Xn(t),Y-(2), Z2n(¢)), r = 0,1,..., N, are the coefficicnts of the expansion
series of an outer solution (X (t,¢€),Y(t,€), Z(t,¢€)) of (1.1a,b), these systems (4.2), themselves
are independent of the concept of an outer solution. So far, we only proved the existence and
uniqueness of the systems (4.2),. Obviously, this does not mean the existence of an outer
solution. But motivated by the procedure used in the derivation of the systems (4.2),, we may
exploit the solutions (X(t), Yo(t), Z+(t)), » = 0,1,..., N, to construct an outer solution. This
will be discussed in the next chapter.

5. Existence of outer solutions

This chapter concerns the existence of an outer solution of the outer problem (3.5a,b,c).
We cite the following Lemma which plays an important role in the study of singularly perturbed
ODE’s.

Lemma 5.1: Let A(t) be an n by n continuous matrix for to <t < t; and let the real parts
of all its eigenvalues be less than —p on ty < t < t; for some p > 0. Let ¢(t,s,¢€) be the
fundamental solution of

dX
= AX
X(8) = Inxn

onty <t <t forsomes onty < s <t. Then there exists a constant K, which is independent
of €, such that
H(t,s, )] < Kemrtmo)/%¢

fortg <s<t<t.

For the proof seee.g. [Le].
For the theory, we require further assumptions about the solution (Xo(t), Yo(t), Zo(?)} of
the reduced system (3.1a,b).




Assumption (III): Proposition 3.1 holds and for any t € [0, T| all eigenvalues of the matrix
B(t), defined in (3.3b), remain strictly in the left half planc.

In the previous chapter we formally derived the systems (4.2), by assuming that an outer
solution (X(¢,€),Y(¢,¢), Z(t, €)) has an expansion of the form (4.1b), and we obtained exis-
tence and uniqueness results for solutions (X, (t),Y:(t),Z,(t)) of (2.3),, r = 1,...,N. The
following theorem shows that these solutions (X, (t), Y.(t), Z.(t)) can be used to construct an
approximation of an outer solution (X(t,¢),Y(t,¢), Z(t,¢€)).

Theorem 5.1: Under Assumptions (I) - (III) and for any given £}, r = 1,...,N, there is a
constant ¢y > 0 (g € J.) such that the outer problem (3.5a,b,c) has for any ¢, 0 < € < ¢
a solution X = X(t,¢), Y = Y(t,¢), Z = Z(t,¢) € D, defined on the same interval [0,T] as
(Xo(1),Yo(t), Zo(t)), which satisfies

N
X(te) =) Xi(t)e' = O(eN),
=0

N
Y(te) = Y Yi(t)e = 0N, ase—0 (5.1)

=0

Zi(t)e' = O(MH),

™o

Il
=)

Z(t,€) —

uniformly for 0 <t < T,
[Proof] To begin the proof we simplify the outer problem (3.5) by introducing a change of
variables defined by the affine mapping

T.: R™ x R" x R* = R™ x R™ x R¥; T,(u,v,w)=(X,Y,2), (5.2a)

N
X=u+d X(t),
r=0

N
Y =0+ Yot + Ai(th, (5.2)

r=0
N
Z=w+ Z Z,(t)e" + Ao(t)u + By ().
r=0
Here Ay, A7 and B, are chosen as

Ay(t) = B) ™ (fox () f2:()) " faz(8) — fau(2)),
Ag(t) = —(f2:(1) ™ fay (D AL(t) = (f2:()) ™ far(2), (5.3)
By(t) = —(f:(1))" fay(t),
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where B(t) is defined in (3.3b). Since the domain of the functions fi(z,y,z,¢€), fa(z,y,2,¢)
and fa(z,y,2,¢€) is D x J., we require that the new variables (u, v, w) remain in some suitable
domain such that the range of the mapping 7; belongs to Dforall 0 <t < T and 0 < e < ¢,
where ¢; € J. is sufficiently small. In order to find such a domain for T; it is important to
note that (Xo(t), Yo(t), Zo(2)) is an interior point in D for any ¢ € [0,T}. In fact, since (5.2b)
can be written as

N
X = Xo(t) + u+ (Z X,.(t)e"1> é

r=1

N
Y =Yo(t) + v+ Ar(t)u + (Z Y,(t)e'"1> € (5.4)

r=1

N
Z =Zoy(t)+ A2(t)u+ Byt +w+ <Z Zr(t)e'_l) .

ra=1

and (X,(t),Y:(t), Z-(t)),r = 1,..., N, A1(t), As(t) and B,(¢) are uniformly bounded in ¢, 0 <
t < T, it follows from (Xo(t), Yo(£), Zo(t)) € int (D) Vit € [0,T] that there exist positive
numbers ¢; (< € € J.) and § such that T;(u,v,w) € D for any given ¢, t € [0,7] and for all
(u,v,w) € B(0,6) x B(0,8) x B(0,6). Accordingly, for

D =D, x D, x Dy,
D, = B(0,6) ¢ B™, D, = B(0,6) C R", D, = B(0,6) C R¥,

we have To(D)C Dforall 0< ¢t < T.
Substituting (5.2b) into the first equation of (3.5a) we obtain that

du | g~ dXi()
dt = dt

N N
= A(Xo(t) +u+ D Yoty +v+ Ai(thu+ Y Yi(t)e', (5.5)
i=1

i=1

N
Zo(t) +w + Ag(t)u + Bi(t)o + Y _ Zit)e'e).

i=1

We introduce the Taylor expansion of f; at (Xo(t), Yo(t), Zo(%),0) . For this the abbreviations
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will be used

I 0 0 0
a1 00
A=\ 4) B I o)
o 0 01
Xo(t) u X0
Q(t) = 253 B M RO %; Pt 60
0 0 ba
X N
Q= ’Z’ =Qo(t)+A(t)Zl+;Qx(t)f',
€

where 84 is the Kronecker delta. Then the expansion of fi(Q) at Q¢(¢) has the form
f1(8)

N N
= A1) + Y Z DO A(RO)Y AU + DAl Qot) AW 1 -
r=1 =1 .

N N N
> ;ITD"')f,(Q(,(t))[(A(t)u + 3 U0 = (O )]+ Gltu,v,w,6)
' i=1

r=2 =1
where G(t,u,v,w,¢€) is the remainder term. Obviously, G(¢,u,v,w, €) satisfies the following
Condition (N)
Definition 5.1: A C'-function F(t,u,v,1w,€¢): Rx R™ x R" x R* x R — R® is said to satisfy
the Condition (N) if it satisfies the following asymptotic relations:
(i)
F(1,0,0,0,6) = O(e"),  ase—0;
uniformly for 0 < t < T, where N is a positive integer;
(i)
D, F(t,u,v,w,€) = Oe + fu} + |v] + |w])
D F(t,u,v,w,€) = O(e + ful + |v] + |w)]) as €, [uf, v],Jw| -~ 0
DuF(t,u,v,w,e} = Ofe + [ul + [v] + w])
uniformly for0 <t < T.
It is noticed that the Condition (N) is the same conditions as (1.2a) and (1.2b) in Hy-
pothesis (H) in [Ya2]. Observe that

Df1(Q(t)
= D: fi(Q(t))u + Dy fi{(Qo(t))(v + Ar(t)) + D f1{Q(t))(w + Ax(t)u + Bi(t)v)
= (D:i(Q(1)) + Dy f1(Q(t))Ar(2) + D, f1(Qo(t)) A2(t) Jut

(Dy f1(S2(t)) + D, /1(Q(t) Bi(1))v + D, fr(Qo(t)hw
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and v N 4
r—!D(')fl(Qo(t))(z Qi(B)e)”

r=1 i=1

N 1 N r
= Z 'ﬁD(r)fl(Qo(t)) Z (H , (t)) O

r=1 kryooke=1 \j=1
N

= Z b,(t)e’ + RN(t7 e)
=1

where

N T
1
() =) =DOA(D) (H nk,(t))
r=t kytootkrme \ j=l
1<k; <o
and Rn(t,€) = O(eV+!) is independent of (u,v,w). Since (X,(t), Ys(t), Z,(t)), s = 0,1,...,N

satisfy
dX,

dt
where by(t) = f1(S2(t)), it follows from (5.5,6,7) that

= by(t)

B = (DA () + Dy i Q0O Ar(6) + Doy () Ax( )
(Dyfi(R0()) + D2 fi(R0(H)B1())v + Da fi(Qu(t)w + Ruv(t,€)
N N N
+ 30 2D QAW + 32 — (3 (Y] 59
=2 i=1 i=1
+ G(t,u,v,w,€)

= Ci(tyu+ Li(t)o + Er(thw + Fi(t,u,v,w,€)

where
Ci(t) = D, f1 (1)) + Dy f1(Q0(1))A1(t) + D, f1(Q0(t))As(t),
Ly (t) = Dy fi(Q(t) + D= fi(Qo(t) Ba(t),
Ei(t) = I?szx(ﬂo(t)), , . (5.10)
Bty u,0,w0,6) = Y 2 DO L Qu(ONABH + 3 2u(0) — (3 (0]
r=2 i=1 i=1
+ Bn(t,e) + G(t,u,v, w,€).
Obviously

RN(t, e)
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and

N N N
> —rl—,D"’fl(no(tm(A(t)u + 32 = (Y Qu(t)e')]
r=2 i= =1
satisfy Condition (N). Since also G satisfies Condition (N), this implies that F} satisfies
Condition (N) as well.

Now substitute (5.2b) into the second and third equations of (3.5a) and expand f3, f3
at (Xo(t), Yo(t), Zo(t),0). Then, because (X,(2), Yi(t), Z:i(t)), + = 0,1,..., N, arc solutions
of (4.2);, we obtain two further equations which, with (5.9) form the the following system
equivalent to (3.5) under the mapping 7;:

p .
Ezu' = Ci{t)u + Li(t)v + Er(t)w + Fi(t,u,v,w,€)
eﬂ = B(t)o + Ex(t)w + Fy(t,u,v,10,€)
dt (5.11)
0= E3(t)w + Fy(t,u,v,w,¢) '

N
u(0,6) = £7(€) = ) €7 = On(e) = O(e*)
r=>0

Here
Ey(t) = D, f2(Q0(t)), Es(t) = D.fr(Q(t),

and F, and Fy satisfy Condition (N). Note that in the derivation of the last two equations
of (5.11), we used the fact that

D: £2(0(1)) + Dy f2(Q())A1(t) + D, f2( Q1)) A2(t) = 0,
D, f3((2) + Dy f3(Q(#)) A1 (1) + D f3(Qa(8))A2(t) = 0, (5.12)
Dy f3((1)) + D, f5(Q{t))B.(t) = 0,
and
Dy f2(Q0(t)) + D, f2(Q(t)) B (t) = B(t)
where B(t) is defined in (3.3b).With the notations (5.6) this is equivalent with
D f2(Qo(t)A(t) = (0, B(t), D, f(Q(t)), D f2(26(t))),
D f3(Q(t))A(t) = (0,0, D, f3(Q20(2)), D. f3(Q(t))).

In other words, from the defining relation (5.3) we find that A,(t), A,(¢) and B, (¢) solve (5.12).
If we can show that there exists a solution (u(t, €), v(t, €), w(t,€)) € D of the system (5.11)
which satisfics

u(t,€) = O(eM*), v(t, ) = O(eN 1), wit,e) = OV, ase— 0 (5.13)
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uniformly for 0 < ¢ < T, then Theorem 5.1 is proved. But note that we need only the existence
of a solution of (3.5) without requiring its uniqueness. Hence instead of (5.11) we consider the
constrained system of integral equations

ult,) = OO + [ 8B I(5,0) + Brlshus, )

£ (5,u(5,), 005, ) (5,9, )ds)
ot = [ HE2 DB (e, ) + Faoru(s 9 v(s,€) 006, 9, s
wlt, ) = ~(B5() ™ By (4 ult, 9,5 ), (1,61,

where ®(t) satisfies

2O _amen, o<isr
8(0) = I

while ¥(¢, s, €) is the solution of the following system:

2 _lpww, o<s<t<T
dt €

B(t,s,€))=s = I.

Note that the system (5.14) is not equivalent with the system (5.11). But, obviously, if (u(t, €),
v(t,€), w(t, €)) € D solves (5.14), then it solves (5.11) as well. Thus if we can prove that (5.14)
admits a solution which satisfies the asymptotic relation (5.13), then we are done. We will use
the theorcms in [Ya2] to prove this existence.

By Assumption (III) there exists a positive number p such that

ROABM)) < ~p

for all eigenvalues of B(¢), 0 <t < T. Then Lemma 5.1 ensures the existence of a constant K,
which is independent of ¢, and such that

ult—s

I\I’(t)‘s’e)lSKC_ 2, 0<s<t<T

With the notations
0i(t,€) = B(t)n(e), 62(t,€) =0, Gi(t,s,€) = B(t)D'(s)L1(s),
Hi(t,s,€) = ®(t)® Y(s)Ey(s), K(t,5,€) = ¥(t,s,e)E(s), (5.15)
F] = Q(t)@“l(s)ﬁl, Fg = ﬁg, F3 = —E;l(f)ﬁ‘:;,

(5.14) can be written in the form of constrained systems of intcgral equations as the one
in [Ya2], and evidently the Hypothesis (H) in [Ya2] are satisfied. Therefore by the results of

15




Theorem 1, 2 in [Ya2], (4.13) has a unique solution (u(t, €), v(t, €), w(t,¢€)) € D, forall t € [0,7T)
and 0 < € < €3 ( < €;) that satisfies (4.12). Therefore, under the transformation (4.1), (X(¢,¢€),
Y(t,€), Z(t,¢)) remains in D for all £ € [0,T] and 0 < € < €2 and is an outer solution which
satisfies the asymptotic relations (4.1b). This completes the proof of Theorem 5.1. g

6. Asymptotic expansion of inner solutions

6.1. Formal derivation of asymptotic expansion of inner solutions. Now to proceed
to the inner system, by using Assumption II, for the initial conditions a(0, €), 8(0, €), (0, €)
in (3.72) we must have

N
a(0,€) = £(e) = £'() = Y (& = €)' + O(eN ),

i=1
N
B(0,€) = n(e) = Y (0,6) = 3 _(n; = Yi(0))" + O(N™), (6.1)

;0
7(0,€) = ((e) = Z(0,€) = > _(¢i = Zi(0))e' + O(e™H).
=0

Then, formally, we expect the solutions of (3.7a) to satisfy asymptotic relations of the form
N
afT,€) = Z(l,'(T)f' + O(eNHY)
=0

N
Blr,e) =D Bi(r)e +O(NH) (6.2)

=0

N
¥, €)= Z‘yg(r)e‘ + 0(eM Y
i=0
which should hold imiformly for 0 < 7 < T/e.
We will substitute (6.2) into (3.7a), expand right sides at (Xo(0) + ao(7), Yo(0) + Bo(7),
Zu(0) 4 vo(7)) and collect terms with equal powers of € to obtain the equations which (a,(7),

Bi(7), i(7)) must satisfy. Since the expansions of the right sides in (3.7a) involve very tedious
derivations, we sct for abbreviation

a(r,€) + X(eT,€) X(er,€)

_ | B(r,€) +Y(er,€) | Y(er,€)

fr,e) = Y(7,€) + Z(er,€) | (€)= Z(et,€)
€ €
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Then
fi(ETr ofr,€), B(r, €),7(7,¢€), €} = fi(Q(T, €)) — fi(l(r,¢€)), i=1,2,3.
For simplicity, in the following, the subscript ¢ will be omitted.
For later use we state the following two identities:

N
D aieti = DZM ek +0(eNH) (6.3)
‘f:; k=1 i=1

and n
N N n
hn(e) = (E ake") = Z Hak_e"‘+"'+k“. (6.4)
k=1 kyyeenykn=1s=1

From (6.4) it follows that in the polynomial N duhale) in € the coefficient of € is

n=1

Zd,. 3 Hak,, fo<r<N (6.5)
n=1 kikodkesr e=l
1<k <r

while for r exceeding N it is

N n

Sde Y. o (6.6)

n=1 ky4o-tkp=r g=1

1<k <N

Since (X(t,¢), Y{(t,¢€), Z(t,€)) and (a{r,€), B(r,€), ¥(,€)) satisfy the asymptotic relations
(4.1a,b) and (6.2), respectively, we obtain, with (6.3), that

X(er,€) + afr,€)

N
= Xo(er) + ao(r) + Y _(Xi(er) + ai(1))e' + O(eN+)

=1 (6.7)
k (" ')(O)T —i
= Xo(0) + awo(r) + Z(:u(r) + Z S e O,
and similarly that
(k=1)
X(er,€) = Xo(0) + Z(Z 2(-—L)e +0(eMH), (68)
k=1 i=0

With (6.7), (6.8) and the analogous expansions for Y(er, e} + o7, €), Y(er,€), Z(er, e} +a(r,¢€)
and Z(er,€), we find that

N
Qr,€) = () + Y Qulr)ek + (N+Y),

k=1

N
T(r,e) =To+ » T(r)e* + (M)
k=1

(6.9)
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where

ko X oyrkd
a'k(T)+E,=[,-“7£)—!‘-‘
Xo(0) + aq(r)

W)+ T, S
Qo(ry = | LA g 02 O ke . (6.10)
Z0(0) + 7o(7) Kz (oyeked
0 (T + 2ice = —
2%
ko XET0)kmd
Yizo “ =y
,\’0(0) Zk y &gy i
b= | DO py= | &= = (6.11)
2(0) e 20Dy
Yimo Sy —
b1
and 6 is the Kronecker delta. It follows from (6.10) and (6.11) that
fler,alr,e), ﬂ(r €),7(7,€),¢) = f(Qr,€)) - (F(r o)
= f(Qlr) + Zm (r)e* + O(eN 1)) - F(To +Zl‘k(r Je¥ + O(M 1Y)
k=1 k=1
(6.12)

= f(Qo(r) + Z DG (ZQ (r)e )
_f(ro)——ZD  f(Ta) (ZF"( e ) +O(eNH),

=1

By collecting equal powers of € in (6.12), with (6.6) we find that the coefficient c.(7) of €,
1<r<N,is:

" DI F(Q(r Di (T !
NUED IS S ) CWER ghti) S e

j=1 k4o bhjmr g=1 =1 e+ +E
1<k ( 1<k <r
D’ Q
= DA(Q(r)Q <r)+2 Py [T 2.0 (619
Kydodkjmr g=)
(h (r

", D’ f(Io) ?

-y 2 e,
J=1 kit chkj=r 5=1

15hj <r
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Since, by (6.10),
Df(Qa(r))(7) = Du f(Qo(7))ar(7) + Dy f(Q0(T))Br(7) + D2 f(Qo(7))7+(7)

X(" ')(O)T —i Y(T-')(O)Tk i
D, f(Q0(r —-—-——— o(T (i
+ D, f(S( )); S+ Def @l ”§ 5 610
{r—i) ki
D) A D,
i=0
it follows from (6.13) that
er(r) = D2 f(Qo(r))ar(7) + Dy f(Q0(r)B:(r) + D f(Qo(T)e(7) + Pr(7) (6.15)
where
Py(r)
(r—i) Ty gy hi
=D f(Qo(f))ZX——@)T,—— D) Y i —
=0 )
(r=i)
+ D, f(Q(r)) E L—(—“))’,— + Def(R(r))én
+ 3 DA0lr) > [o.n-S 240 & (I
j=2 L% o8 'Hl =r g=1 kyt +k =r g=1

T (r—i) —i
= (Def(R0(r) = Def(To))érn + (D f(Q0(r)) = Duf(Ta)) X

20 (k)
(r—i) k—i
+ (D@7 - Dy(Ta) 3 L O
=0
(r=3) gy ki (6.16a)
+(D.f(%(r)) - D f(ro))z Z—(")),—
j=2 k4 +k =r g=1 j=2 kl+-‘-+kl- =r g=1

which is a polynomial in al,ﬂl,'yl,...,ar_,,.ﬂ,._l,'y,__l with the coefficients depending on
DIf(Q0(r)), j = L,...,r and DIf(Ta), (X;2(0), ¥{2(0), Z{°(0)), ir§ = 0,1,...,7. The
constant term in the polynomial P.(7) is

3 (D f(S0(r) - DT /5t D Hrk ()

j=1 ko tkj=r g=1

15k;<r (6.16b)
=Y (D’ f(Qo(7)) = D? f(T0)) prj(7)

=1
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where

1 J
it =% > JITu (6.16¢)
7 Ry doothimr g=]
1<k <

Obviously, by (6.11), the degree of the polynomial p,;(r) in 7 is < r. In other words, the
constant term in the polynomial P, is the sum of certain terms, each of which is a product of
the factor of the difference between the derivatives of f at Qq(7) and Ty and the polynomial
prj(7) in 7 with degree < r.

Now substituting (6.2) into (3.7a), with (6.15) wc obtain that

N
da,(7) , N+1
r==0 dar ¢ ot )

= €(fi(Qr,€)) - fi(T(r,€)))
N
= e{ fi(Q(7)) = iTo(r)) + D V(7)) + O(NHY),

N

> Ll o

r=0

N
= fo(Qo(7)) = fo(To) + Z B (r)em + O(N T,

r=1

N
0= f3(Qu(7) = folTa) + Y ) (r)e" + O(NH1),
r=1

where c(,i)(r) is defined in (6.15) with f replaced by fi, ¢ = 1,2,3. Since

f2(To) = f2(Xo(0), Yo(0), Z5(0),0) = 0,
f3(To) = fa(Xo(0),¥5(0), Z4(0),0) = 0,

we find, by collecting terms with equal powers of ¢, that ae{r) = 0, because %ﬂr‘l =0, ay(0) =0,
and ( since Xo(0) = &, )

dfo(7)
dr

= f2(€o, Yo(0) + Bo, Zo(0) + v, 0),
0 = fa(£o, Yo(0) + B, Zo(0) + 70,0), (617)o
Bo(0) = no — ¥p(0),70(0) = (o — Z4(0),
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and, generally,

da (1)

dr = Pa,r(‘r)7
wﬁﬂ=mﬁme%+mhmwwm+mhmmﬂm+%ﬂm (6.17),

0= szS(QO(T))ar + Dyf3(Q0(T))ﬂr + szS(QO(T))7r + P.’,,.(T),
017(0) = Er - :a ﬂr(O) =1 — Yr(o)a 'Yr(O) = (p — Zr(o)
forr =1,...,N, where P, (1) = c(rl_)l(-r), and Pg (1), P, () are defined by (6.16a,b,c) with
f replaced by f2 and f3, respectively.

The systems (6.17),, r = 1,..., N, are all linear systems in o, B;, 7,. In particularly, the
right side of the first equation of (6.17), is independent of a, By, ¥r, which means that a,(7)
can be obtained easily from the first equation of (6.17),. The terms Pu (1), Pg,+(7), Py (1) in
(6.17), are polynomials in a1, B1,71, < @r=1, Br—1,7r—1. Moreover, the coefficients of Pa,(7)
depend on 7, Bo(7),ve(7), and (X4(0), Yo(0), Zo(0)) and the derivatives of (X;(t), Y;(2), Zi(?))
att =0fori=0,1,...,r~1, while the coefficients of Pg (7), Py r(7) depend on 7, Bo(7),0(7),
and (Xo(0), Yo(0), Z0(0)) and the derivatives of (X(t), Yi(t), Zi(t)) at t =0 for i =0,1,...,7.
Hence for r = 1,...,N, Par(7), Ps,r(7), Py r(7), are known recursively, if (a,—1, Br—1, ¥r-1)
can be obtained recursively for known (X;(t), Yi(t), Z:(t)),t = 0,1,..., N . The constant terms
of these polynomials are the sum of certain terms, each of which is a product of the factor of
the difference between the derivatives of f; at (£, Yo(0) + Bo(7), Z0(0) + 7e(7),0) and (&,
Yo(0), Z¢(0),0) and some polynomial ¢(7) in 7 with degree < r.

6.2. Properties of the expansion of inner solutions. With the outer solution
(X(t,¢€),Y(t,€), Z(t,€)) of Theorem 5.1 we can apply the change of variables (3.6a,b) and
construct the boundary layer problem (3.7a,b). For the study of the inner problem (3.7a,b) we
impose the following assumption on the solutions of (6.17)g:

Assumption (IV):
(i) The initial value problem

B (e, Yo(0) + 8, 20(0) +7,0)
0 = f3(¢o, Yo(0) + B, Zo(0) +,0), (6.18)
ﬂ(o) = b7 7(0) =cq,

corresponding to (6.17)¢ has for
b= no — Y5(0) and ¢ = (g — Zo(0)
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a solution (Bo(7), 70(7)) defined on [0, co) such that
Qo(7) = (&0, Yo(0) + Bu(7), Zo(0) + (7)) € D for all 7 > 0, and

Jim (Bo(7), (7)) = (0,0).

(ii) The matrices

D, f3(Q0(7),
C(1) = Dy f2(Q(7)) = D: f2(Q(r)) (D f(Q(7))) ™ Dy f3( (7))

are nonsingular for 7 > 0.

Under the assumptions (I) - (IV) and with properly chosen &}, r = 1,..., N, we shall
prove in Proposition 6.1 that the system (6.17), has a unique solution (a,.(7), 5,(7),7.(7))
defined on [0,00), 7 = 1,..., N, and that this solution decays to zero exponentially as T — oo.

The following result provides sufficient conditions under which Assumption (IV) can be
derived from Assumptions (I) - (III):

Lemma 6.1: [f for the initial conditions (£(€),n(¢€),{(€)) of (1.1} the point (&, nq.Co) is suffi-
ciently close to the point (£9,Y5(0),Z¢(0)), then Assumption (IV) is a consequence of Assump-
tions (I) - (III).

The principal part of Lemma 6.1 is a direct consequence of Lemma 6.3 below which in turn
can be proved by means of the following result:

Lemma 6.2: Let d

T
d_t = .4I+f(1,1')
where A € R " is a real ( constant ) matrix for which all eigenvalues have negative real parts.
Let f be real continuous for (z,t) € B(0,6) x R*, where RY = {t |t >0}, and§ >0isa
small number, and let

flt,z) =o(lz]) asfzf—0
uniformly in t, t > 0. Then the identically zero solution is asymptotically stable.
For the proof see, e.g., [CoLe].

Lemma 6.3: Let Assumptions (I) - (III) hold and consider the initial value problem (6.18)
where the initial point (b, c) satisfies the constraint condition fi(&, Yo(0) + b, Z5(0) + ¢,0) =
0, and (Xo(t), Ya(t), Zo(t)) is the solution arising in Assumption (III). Then for sufficiently
small |b, |e|, the DAE (6.18) has exactly one solution (8(t),4(7)) defined on [0, 00), for which
0(0) + B8(7) € Dy, Zo(0) + 4(7) € D, and

Jlim (B(r),2(r)) = (0,0).
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Proof: By Assumption (I) the matrix D, f3(£o, Y5(0), Z5(0),0) is nonsingular, (¥5(0), Zo(0))
is a point of the open set Dy x D,, and we have f3(£o,Y0(0), Zo(0),0) = 0. By the implicit
function theorem there are two positive scalars §5 and 6, such that Y5(0) + B(0,63) C D,,
Z4(0) + B(0,6,) C D,, and that for any § € B(0,8p) there exists exactly one v = ¢(f) €
B(0,6,) for which f3(€o, Yo(0) + B, 20(0) 4+ v,0) = 0. Since the functions f, and f; were
assumed to be sufficiently smooth, we may expand them at the point (£, Y5(0), Zo(0),0) and
write (6.18) as
= Dyfalto, ¥o(0), Z0(0),0)8
+ Dy 80, Yo(0), Z0(0),0)y + F(8,) 619

0 = Dy f3(é0, Yo(0), Zo(0), 0)3

+ Dy f3(€0, ¥0(0), Z5(0), 0)y + G(8,7)

where F(8,7),G(8,7) = O(|B1® + }¥|?) as B — 0 and v — 0. From the second equation of
(6.19), it follows that

dﬂo(T)
dr

v = = (D f3{£o, Yo(0), Z0(0),0)) ™ Dy fa(&s, Yo(0), Zo(0),0)8

(6.20)
+O(IB + ?)
which, with ¢(0) = 0, implies that
7=4¢(8)=0(8), asf-0 (6.21)
Substituting (6.20) into (6.19) and using the asymptotic relation (6.21) we find that
g
= =BB+R(B). (6.22)

Here

R(B) =F(B,7) — Dy f2(§0,Yo(0), Z0(0), 0)(D: f3(é0, Yo(0), Z6(0),0)) ' G(8,7)
=0(18I" + hI*) = 0(IB)I), as 0

and B = B(0) is the matrix defined in Proposition 3.1 for which by Assumption (III) all
eigenvalues have negative real parts. Thus by Lemma 6.2, 0 € B(0,8g) is an asymptotically
stable solution of (6.22), namely, for any 0 < e < dg, there exists § < §g such that

1B(0) <& (orjbl <)
implies that the solution 8(7) of (6.22) satisfies
|B(t)| <e forallT>0
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and

'lin;xo B(r)=0.
Because 8(7) remains in the ball B(0,64) for all 7 > 0, if follows from the continuity of ¢ and
#(0) = 0, that y(r) = ¢(B(r)) € B(0,4,) for all r > 0 and

lim (7)) =0.

This completes the proof of Lemma 6.3. g

Proof of Lemma 6.1: We apply Lemma 6.3 to (6.17); to complete the proof of Lemma
6.1. Lemma 6.3 ensures that when (1o, (o) is sufficiently close to the point (Y5(0), Zo(0)) then
|80(0)], |70(0)| are sufficiently small and (6.17)o has exactly one solution (Fo(7), (7)) defined
on [0,00) which satisfies
Tim (Aa(7), %(r) = (0,0)
and
{Yo(0) + Bo(T), Zo(0) + Yo(7)) € Dy x D;, Vr € [0,00).

It only remains to prove that the condition (ii) of Assumption (IV) holds. For this we can
choose sufficiently small 65 and &, such that for all (8,4) € B(0,63) x B(0,é,) the matrices

D. f3(60,Yo(0) + B, Zo(0) + 7,0),
Dyf2 — D. fo(D. f3) 7' Dy f3(£0, Yo(0) + 8, Zo(0) 4+ 7,0),

arc nonsingular. This is guaranteed by the continuity of these two matrices and their nonsin-
gularity at (8,7) = (0,0). Then, for ¢ = 84 there exists a § > 0 such that

[Bo(0)] < 8, |r0(0)] <6,

implies that (8y(7), v(7)) € B(0,6) x B(0,8) for all > 0. Thus on the solutions G5(7), y0(7)
the matrices (6.23) are indeed nonsingular. This completes the proof of Lemma 6.1.

(6.23)

Lemma 6.4: Under Assumptions (I) - (III), if the solution (Bo(7),vo(7)) of (6.17), satisfies
the Assumption (IV), then there exists a positive o such that

Bo(r) = O(e™77), 10(r) = O(e™"7) (6.24)
as T — 0o.

Proof: Since fp(7) — 0, (1) — 0 as 7 — oo, for any given € > 0, we may choose a
sufficiently large 7y > 0 such that 8y(r) € B(0,63) and +(r) € B(0,4,) for all 7 > 75, and

IR(Bo(T))] < €
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where the function R is defined in {6.22). The equation (6.22) can be written as the integral

equation

Bo(7) = e~ B7 By(m0) + / i e~ B9 R(Bo(s))ds. (6.25)

Since the real parts of all eigenvalues of B are negative, it follows from Lemma 5.1 with
A(t) = B and € = 1, that there exist positive numbers K and y such that

lle™ 87|l < Ke™#T, for all 7 > 0. (6.26)

Note that here we use the fact that the fundamental solution ¢(t, s} of the equation

dy
dr ~

By

is ¢(1,5) = e~ ("")B for 0 < s < 7 < oo. Hence (6.25) and (6.26) together show that

Bo(r)| < e Ipu(ro) + ek [ €K go()lds
70
or r
1B < Bu(ro)] + K [ em (ol
By Gronwall’s inequality it follows that
Bo(r)] < |Bo(mo)}e <Ko (HmeRIT (6.27)
and with € = 3% and ¢ = /2 we obtain from (6.27) that

Bo(r)=0(e™°") asT > 00

which, together with (6.21), completes the proof of Lemma 6.4. g

Lemma 6.4 shows that the first term of an inner solution of (3.7a,b) is negligible out-
side the boundary layer, which also is a property of any inner solution of (3.7a,b). Since
(ar(7), Be(T)yve(T)), 7 = 0,1,..., N, were derived as coefficients of an inner solution of (3.7a,b),
we expect that all terms (a,(7), 8-(7), (7)), r = 0,1,..., N, possess this property, namely
that ,for r =1,...,N,

TB_‘IEO(O(,-(T), ﬂr(7)7 7r(T)) = (0,9, 0)

This will be confirmed in the following Proposition 6.1 where also the existence and uniqueness
of solutions (ar(7), B-(7),7r(7)) of the systems (6.17),, 7 = 1,..., N, is discussed.
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By (6.17), all coefficient functions (ar, fr, v-) satisfy a linear system of the form

4o _ pn),

dr
d
9 — Ao+ An()B + An(r + Pulr), (6.28)
0 = Ag1(7)a + As(7)8 + Ass(r)y + Pa(7),
a(0)=a", BO)=p*, ~(0)=1"

for which

(i) Aij, P;j arc of class C? on [0,00) and As3(7) is nonsingular for all 7 > 0;

(i) A; ; are bounded uniformly in 7 € [0,00) and the limit

Jim (A2(7) — Asa(T)AZ (1) As2(7)) = Bo

exists ;
(iii) the limiting matrix By has all eigenvalues remaining strictly in the left half plane.
And the initial point (a®, 8%, v*) satisfies the compatibility condition

Az (0)o* + Az2(0)53* + As3(0)y* + P3(0) = 0.
For the system (6.28) we obtain the following result.

Lemma 6.5: Under the conditions (i), (ii) and (iii) the system (6.28) has exactly one solution
(a{T), B(7), 7(7)) defined on the interval [0, 00). Moreover, the asymptotic relations

Pi(r)=0(e”?"), ast—o00, 1=123

hold with some o > 0. Then -
a" = ,/ Pi{s)ds < 00 (6.29)
0

and with this a* there exists a solution (a(7), B(r), ¥(7)) of (6.28) that satisfies
a(r)=0(e™™7), (1) =0(e™7), y(7)=0(e""'7), asT — 00. (6.30)
with some 0 < oy <o .

Proof: From the first cquation of (6.28) we obtain

a(r)=a* + /U Pi(s)ds. (6.31)

Hence since, by assumption (i), A3a{7) is invertible, it follows from the third equation of (6.28)
that

v =~ A7 (1) (A1 {r)a + Asa(7)B + Ps(7)). (6.32)
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Substituting (6.31) and (6.32) into the sccond equation of (6.28) we obtain
a

e A(T)B + b(r) (6.33a)
where

A(r) = Apa(r) — Aza(7) Az (T)Asa(7),

b(r) = Py(7) — Ags(r)Agg (7)Ps(r) + (A7) = Az3(7) A5 () Asa(7))a(T).

Since (6.33a) is a linear ODE with the coefficients defined on [0, 00) it follows from the basic
existence theorem for initial value problems of lincar ODE’s that with the initial condition
B(0) = B* the equation (6.33a) has a unique solution 8 = B(7) on [0,00). Inserting 8 = B(7)
into (6.32) we obtain the component v = ¥(7) of the solution for (6.28). This proves the first
part of Lemma 6.5.

(6.33b)

For the rest of this lemma, note that because of

P(r)=0(e™""), asT— oo,

/000 Py(s)ds

exists. Then by choosing a* as in (6.29) we find that the solution a(7) has the form

the integral

a(t) = —/roc Py(s)ds

which implies that a(r) satisfies the asymptotic relation (6.30). Since 4;;, ¢ = 2,3,j = 1,2,3,
are bounded uniformly for > 0, and Py(7), Ps(7), a(7) satisfy the asymptotic relation

Py(r)=0(™""), Py(r) = 0(e™"), a(r) = 0(e™"), as T — o0
it follows that b(7) in (6.33b) satisfies the same asymptotic relation, namely
b(r) =0(e™°7). (6.34)

Since by conditions (ii) and (iii), lim,—c A(7) = By and all eigenvalues of By remain strictly
in the left half plane, there exist 4’ > 0 and 75 > 0 such that for any cigenvalue A(A(7)) of
A(7) the inequality

RO(A(T)) < —4' <0, VT2

holds. Let &(r,s) be a fundamental solution of the equation:

d®
_&? = A(T)Qa

(1, $)r=s =1, T <s<T
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From Lemma 5.1 with € = 1 we obtain the estimate

‘I’(t,s) = O(C*M'(t—s)n)
Then for the solution B(r) of (6.28), it follows that
A(r) = ®(r,0)8" +/ (7, s)b(s)ds
0

=0(c-""/’)+/ O(e™# " =12)0(e=7*)ds
a

as r — oc
= 0> %) 4 O(c™77)
— 0(6_”‘ r)
where
ay, = min{o, ' /2}
Hence (6.32) implies that the asymptotic relation
Y1) =0(e™"") as T — 00

holds, which concludes the proof. g

Proposition 8.1: Under the assumptions (I) - (IV), the system (6.17), has a unique solution
(o (1), Be(7), (7)), for 7 > 0 and r = 1,...,N. Moreover, there exist coefficients £, r =
1,..., N of the expansion (4.1a) of £*(¢) and positive numbers o, such that

a(7) = 0(e™ ")
Be(r) =0(e™7T) r=1,...,N (6.35)
(r) = O(c™*"")

as 7 — 00,

Proof: The first part of this proposition is a direct consequence of Lemma 6.5 since, by
Assumption (IV), D, f3(§(7)) is nonsingular for all 7 > 0 and by the derivation of the system
(6.17), Pa (1), Py,(7) and P, ,{7) are well defined for r > 0 provided only the previous terms
ai(T), 1), vi(T), 1 =1,...,r — 1, are available.

Hence it remains to show that with properly chosen coefficients €7, r = 1,..., N, the
asymptotic relations (6.35) hold for all 0 < r < N. This can be shown inductively by applying
the methods used to prove the second part of Lemnma 6.5. Indeed, Assumption (IV) ensures
that the estimate (6.35) is valid for r = 0. Thus assume that there exist positive numbers
o1,...,0% such that the asymptotic relations (6.35) hold for all 1 < r < k. Note that the
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coefficients D, fi((7)), Dy fi($20(7)), D fi(R0(7)), i = 2,3, of the system (6.17), are bounded
uniformly in 7 for 7 > 0. From the derivation of the system (6.17), we know that Py 41(7),
Pp k41(7) and Py x41(7) are polynomials in ay, By, 71,---» @&, Bi, 7 With coefficients depending
on 7, fBo(7), 1o(7) and (X,(0), Yo(0), Zs(0)) and the higher derivatives of (X;(t),Y;(t), Zi(t))
at t = 0. Moreover, for the constant terms of P k+1(7), P x+1(7) and Py x41(7), it follows
from (6.16b) that they have the form

k+1
2 (D7 f(Q(r)) = D F(To))pi415(7) (6.36)
i=1

where pi4,;(7) is a polynomial with degree < k + 1. Since

0
) =ru= | 03
0

the difference f(Qo(7)) — f(T'o) has the rate O(|Bo(7)|+}yo(7)}) which, together with (6.36),
implies that the constant terms of Py x41(7), Pgx41(7) and Py z41(7) all have the rate

O((1Bo(T)| + Iro(T)DB(7)) asT — o0 (6.37)

where p(7) is a polynomial of degree < k 4+ 1. Recall that for any given small number ¢ > 0
and any polynomial p,(7), the limit

lim p,(r)e™ " =0
T—00

exists. Moreover, by Lemma 6.4, Bo(7),¥0(7) have the rate O(e™°") as 7 — oo. Thus, with
aq = 0/2, it follows from (6.37) that these constant terms have the rate

O((1Bo(T) + Iro(7))B(7)) = O(B(r)e™"7) = O(B(r)e™ " T)e™ 77 = O(e™"°7)  as 7 — 0.
Hence there exists a positive number o} ., such that the following asymptotic relations hold

Poj(7) = O(e7%kn7)
Pgppa(r) = O(e“';eﬂ") as T — 00
Pypa(7) = O(e k")
This implies that
/ P, ky1(7)dr
0
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exists. Therefore, by integrating the first equation of (6.17)k4; we see that

appt{T) = bk — €4 +/ Popr(s)ds —/ Poryr(s)ds.
[} r
Accordingly, we choose
g1 = &k +/ Py ks1(s)ds, (6.38)
0

whence
oo o o} . ,
arp1(r) = —/ Po kpa(s)ds = —/ O(e™7+1°)ds = O{e %+ 7) as 7 — 0o

and the asymptotic relation {6.35) holds for ag41(7).
Since By(7), Yo(7) — 0 as 7 — oo, it follows that

Jim {Dy f2(20(7)) = D: f2(Q(r))(D: f3((7)) 7 Dy f5(R(7))} = B(0)

where by Assumption (III) all eigenvalues of B(0) remain strictly in the left half plane. Hence,
by applying Lemma 6.5 to (6.17)x41, with £}, chosen by (6.37), we obtain the existence of
ory1 > 0 ( € o)y, ) such that the other two components fx1(7) and vi41(7) satisfy the
asymptotic relations

Trg1(T) = O(e™7*+17)

Thus altogether we proved that the existence of £}, , and of 644, > 0 such that the asymptotic
relation (6.35) holds for r = k + 1 and, therefore, (6.35) is valid for all 0 <r < N.

Brn(r) = O(e™™+7) } as T — 00

6.3. The procedure for generating outer and inner solutions. The proofs of Lenuna
6.5 and Proposition 6.1 describe the procedure for the generation of the sequences £} and

(X (1), Y. (1), Z,(8)), r=1,...,N (6.39a)
(ar(7), Be(T) (7)), r=1,...,N (6.395)

which solve the systems (4.2), and (6.17),, respectively, and satisfy the asymptotic relations
(6.35) provided the first terms (Xo(t), Yo(t), Zo(?)) and (0, Bo(7), vo(7)) are available and
satisfy Assumptions (I) - (IV). Suppose (X (t), Y;(t), Z.(t)) and (a.(7), B-(r), 7+(7)) are
available for all r < k and satisfy the requirements. Note that the polynomial P, x41(7) in
ay, ..., vk depends only on the values of (X (t), ¥,.(t), Z,(¢)) and their derivatives at ¢ = 0 for
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r=0,1,...,k, and has the rate Po41(7) = O(e™*+17) as 7 — oo. Thus Py k+1(7) is known,

and furthermore -
/ Poiyr(r)dr
[}

exists. Then with £}, , specified by (6.38), with which we obtain the solution ak41(7) of the
first equation of (6.17)x4+1. From the proof of Proposition 6.1, it follows that ag;(7) satisfies
the asymptotic relation (6.35). With the initial condition X11(0) = £f,; we can find the
unique solution (Xg+1(t), Ye+1(t), Zr41(t)) of the system (4.2)k41. Only at this moment,
Pgry1(7) and Pygyq(7) are fully determined because they depend not only on the previous
solutions but also on the current one, (Xx+1 \Yi+1, Zk41). By inserting og4; = apaq(7) into
the last two equations of (6.17)z41, together with the initial conditions

Bit1(0) = M1 — Yieqr(0), 71441(0) = Ck1 — Zie41(0)

we obtain the unique solution (Be+1(7), 74+1(7)). In other words, our procedure has the
following form.

Procedure (A): Let (Xo(t), Yo(t), Zo(t)) and (Be(7),%0(7)) be the solutions of the re-
duced problem (3.1) and of the problem (6.17)o, respectively, which satisfy the Assumptions
(I)- (IV). Forr=1,...,N,

(1) solve the ODE

doy

dr ar(7)
ar(0) = & — &

to obtain a,(r) for
o0
& =¢ +/ P, (s)ds;
0

(2) with the initial condition X,(0) = £} solve (4.2) to obtain the unique solution (X,(t),
Yo(t), Zo(1));
(3) insert a,(7) into the last two equations of (6.17)., to obtain the unique solution (8(7),

(7))

Note that this procedure is indeed independent of the concepts of outer and inner solutions.
But the sequences £} and (6.39a,b) generated by this procedure can be used to construct outer
and inner solutions. Next chapter shows that inner solutions exist and can be expanded with
(ar(7), B(7),7+(7)) as coeflicients.

7. Existence of inner solutions

7.1. Theorems of existences. The following theorem shows that the series

N N N
Zar(r)e', Z,@r(r)e’, Z'y,(r)e'
r=90

r=0 r=0
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generated by Procedure (A) can be used to approximate an inner solution (a{r,¢€), 8(r,¢€),

¥(7,€))-

Theorem 7.1: Under Assumptions (I) - (IV) suppose that the sequences €}, (X, (t), Y,(t),
Z.(t)) and (a,(7), Br(7), 7e(7)), r = 0,1,..., N, are generated by Procedure (A). Let (X(t,¢),
Y(t,€), Z(i,e)) € D for t € [0,T) be the outer solution guaranteed to exist by Theorem 5.1
which satisfies the initial condition

X0, =€)~ + Y&,
i=1

and the asymptotic relations (5.1). Then there exists a unique solution (a(r,€), B(7,€), y(7,¢€))
for the inner problem (3.7) on the interval 0 < 7 < T/e, for all 0 < € < ¢y, where €, (< €) is
a sufficiently small number such that

X(t,€) + a(t/e,€) € D,,

Y(t, )+ f(t/e ) € Dy,

Z(t,€) + 4(t/e€) € Dy,

forallt € [0,T] and 0 < € < ¢, and

N
afT,€) — Zar(‘r)f' = OV,
r=0

N

B(r,e) =Y Be(r)em = O(eN 1), (7.1)
r;o

AWr6) = Y Aelr)e” = O(MH),
r=0

uniformly for 0 < v < T/e as e — 0.

The proof of this theorem will be given after next theorem. From Theorem 5.1 and
Theorem 7.1 follows the main Theorem of this paper.

Theorem 7.2: Let Assumptions (I) - (IV) hold. Then there exists an €2 > 0,0 < €2 < €,
where €, is defined in Theorem 7.1, such that for all § < ¢ < €, the singularly perturbed DAE
(1.1a,b) has a unique solution x = x(t,€), y = y(t,€), z = z(t,¢) in D on the interval 0 < ¢t < T
. Moreover, for any natural number N, there exist an outer solution (X (t, €)Y (¢, €),Z(t,¢€))
€ D, and an inner solution (a(7,€),0(r, €),7(7,€)) such that

z(t,e) = X(t,e) + a(t/e€), y(t,e) =Y (¢, €) + B(t/e,e), z(t, €)= Z(t,€) + y(t/e.€)
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for 0 <t < T and 0 < € < . Moreover, the outer solution satisfies

N
X(t,e)— ZXT(T)ST = O(EN+1)

r=0

N
Y(t,e)— Z Y {(r)e" = O(eVH)
r=0

N
Z(t,e) = Y Z,(r)e" = O(eNH)

r=0

uniformly for 0 < t < T, where (X,(t),Y,(t), Z.(t)) are determined by the system (4.2),,
r=0,1,...,N, and the inner solution satisfies

N
a(t/e,e) — Zar(t/e)er = 0Nt

N
B(t/e,) =) Br(t/e)e” = O(eN*1)

r=0
N

1(t/e,€) =3 ye(t/e)e” = O(eNHY)
r=0

uniformly for 0 < t < T, where (a.(7), B+(7), ¥-(1)) are determined by (6.17),, and satisfy
a(1)=0(e™"7), B:(r) =0(e™""), v (1) =0(e™ "), , r=0,1,...,N, ast - oo

for some o, > 0.

7.2. Proof of Theorem 7.1. In analogy to the proof of Theorem 5.1, the first step here
introduces a change of variables into the inner system (3.7) in order to change it to a technically
simpler form. Let u € R™,v € R, w € R* be defined by

N
a=u+ Zar(f)s',

=0

N
B=v+Y B(r)e + Ai(r)u, (12)

r=0

N
T=w+ ) 1(r)e + Aa(r)u + By(r)y,

r=0

where A;(7), Az(7), and B;(7) will be determined such that after the change of variables (7.2)
the system (3.7) will simplify. At first we have to determine again a proper domain for the new
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varinbles (u,»,w) such that the transformation (7.2) makes sense for the inner problem (3.7).

For this recall that the inner system (3.7) was obtained by introducing the change of variables
(3.6a/b) into (1.1) where (X(t,€),Y(t,€), Z(t,€)) is an outer solution. Thus the change of
variables (7.2) in the inner system (3.7) is equivalent with the following change of variables in
the original DAE {1.1):

N
r=X(t,e)+u+ Z o, (t/e)e”,

;ﬂ
y=Y(te)+v+ Y Belt/)e + Ai(t/e)u, (7.3)
v
e=Z(te)+w+ Z'y,(t/e)e' + Ay(t/e)u + By (t/e)v.

It will be shown that there is a small neighborhood Oj of (0,0,0) such that if (u, v, w) remains
in Oy, then (z,y,2) € D where (2,y, z) is defined by (7.3). For this, we show first that under
Assumptions (I) - (IV) there exists a sufficiently small 0 < €3 ( < €z ) such that (Yo(t)+Bo(t/€),
Zo(t) + 10(t/€)) € Dy x D, for all t € [0,T],0 < € < ea. Indeed, since, by Assumption (IV),
(Yo(0) + Bo(r), Zo(0) + ¥o(7)) € Dy x D for all 7 > 0 and Dy, D, are open sets, there exists
t* € (0,7T) such that

(Yo() + Bolt/€), Zo(t) + 10(t/€)) € Dy x Ds, for all t € [0,t*],0 < e < €3. (7.4)

On the other hand, since (Yo(2), Zo(t)) € Dy x D, forall t € [0,7] and [0, T is a closed set,
there exists r > 0, independent of t, such that

B(Yo(t),r) x B(Zo(t),r) C Dy x D:, Vt€(0,T], (7.5)
From lim,—co(Bo(7), 70(7)) = (0,0), we find that there exists 0 < €y (< €3) such that
1Bo(t/) <7, |o(t/e)l <r, VEe [, TL0 < e< e, (7.6)
Hence (7.5) and (7.6) show that
(Yo(t) + Bo(t/€), Zo(t) + Yo(t/€)) € Dy x D;, forallte [t*. 71,0 < e < €, (7.7
which, together with (7.4), means that

(Yo(t) + Ba(t/€), Zo(t) + vo(t/e)) € Dy x D, forallt€[0.T],0<e< . (7.8)
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By Theorem 5.1, the estimates
X(t,€) = Xo(t) + O(e)
Y(t,e) =Yy(t) + O(e) as € — 0, (7.9)
Z(t,€) = Zo(t) + O(e)
hold uniformly in ¢ € [0,T]. Therefore, (7.8), together with (7.9), implies that there exists
€4 > 0 (< €}) such that

(X(,€),Y(t,€) + Bo(t/e), Z(t,€) + 1(t/e)) € D x Dy x D, Vi€ [0,1*],0 <e<eq (7.10)

Note that (ai(t/e), Bi(t/€),1i(t/€)), ¢ = 1,...,N, are uniformly bounded for all t € [0,T]
and 0 < € < ¢. Moreover, suppose that 4,(r), A2(7) and B;(r) are uniformly bounded for
0 € 7 < T/e. Then there exist €5 > 0 ( < ¢4 ) and § > 0 such that for any (u,v,w) €
B(0,6) x B(0,8) x B(0,§), the point (z,y,z) defined by the transformation (7.3) is contained
inDforallt €[0,T) and 0 < € < e5. We write D, = B(0,6) C R™, D, = B(0,6) C R,
Dy = B(0,6) C R*, and D =D, x D, x Dy,

The change of variable (7.2) is now introduced in (3.7). For abbreviation, the notations
,(7), T'i(7) defined in (6.10) and (6.11) will be used again. Furthermore, set

I 0 00 u
_ | A I 00 I
A=l gr) By I o] Y lw
0 0 01 0
Then
z N
Q=1{ Y| =(r)+ 3 u(r)e + AW + Ru(r,¢) (7.11)
¢ i=1
and
X(ery€) N
Y > i
r= zgfig =Po+;ri(f)6 + Ru(r,€) (7.12)

€
where R,(7,€) = O(eM*!) is independent of (u,v,w). Thus, by expanding f(2) and f(T) at

Qp(7) and [y, respectively, we obtain

o) - £(I)

N N i
= f(Qo(T))~+-Z-[Lf((.f—o(—r-22 (Zﬂk(‘r)ek +A(T)U> + R(m,u,v,w,e€)
ot J! = (7.13)

N 5 N J
— f(To) - Z D_-Z(!El (Z Fk(r)e"> — H(r,¢€).
k=1

=1
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As a remainder term, R(1,u, v, w, ¢) satisfies
(i) R(t/€,0,0,0,¢) = O(e™), ase—0 (7.14a);
(i)

D, R(t/e,u,v,0,€) = O(e + |u] + |v] + |l)
D R(t/e,1u,v,w,¢) = Oe + |u| + |v] + |w]) as ¢, |ul, |v],lw] — 0 (7.14b)
Dy R(t/e,u,v,w,€) = O(e + |u] + |v| + |lw])

uniformly for 0 <t < T.

Morcover the remainder term H(7,€) = O(eM*1) satisfies (7.14a,b) as well. Obviously, the
conditions (7.14a,b) are exactly the same as Condition (N). It follows from (7.13) that

f(Q) - (1)

Moo (7.13)
= F(R(r)) = F(T) + 3 eré” + DARU(rD A + Glru, v, )
r=1
where ¢, is as defined in (6.15) and
G(r,u,v,w,€) = R(r,u,v,w,€) + O(e™+') — H(r,¢)
N .

. N ’ N ’
+3 D’f___(ﬁ“”))[(z Mfr)et + A(r)u) - (Z Qk(r)f") J:
i k=1 k=1

i=2
Under our assumption that A(7) is uniformly bounded on 0 < 7 < T/¢, we see that

N

) N ’ N ’
3 D)f(ﬁo(T))[<ZQk(T)Ek+A(-,-)u> - (Z Qk(T)(") ]
! P k=1

=2

satisfies (7.14a,b). Since the Condition (N) also holds for R(r,u,v,w,e€), O(eN41), H(r,¢),
this implies that G(7,u, v, w,¢) satisfies Condition (N) as well.
Substituting (7.2) into the first equation of (3.7a) we obtain

du N day Q r
o= e = e fi(@) - [1(T)
=0 N (7.16)
=‘[fl(QO(T))'fl(Fn)+ZFrF'+Dfx(Q(1(T))A1/]+G1(r,n.1!,w,f).
r=1

Since o, (1) satisfies the first equation of (6.17),., it follows from (7.16) that

o DA@UMACTI + G700, (7.17)
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where G, satisfies (7.14a,b). Similarly, substituting (7.2) into the second equation in (3.7a),‘
and utilizing the fact that B.(r) is the solution of (6.17),, 7 = 1,..., N, we see that
dv , du
™ + Ay (T)u+ Al(r);i-;
= D f(S(r) AT + G (e, u,v,w,7)

(7.18)

where G®is defined by (7.15) with f replaced by f;. Obviously, the function on the right side
of (7.18) satisfies (7.14a,b). Thus

Gz(e, u,v,w, T)

= —eAy (1) DFL(Qo(rNA(TU — A1 (7)Ca (74, v, 0, €) + GP (e, u,v,w,T) (7.19)
satisfies (7.14a,b) as well, and it follows from (7.18) that
% = Dfo(Qo (AT — Aj(T)u + Gole,u, v, w,T). (7.20)
Finally, substituting (7.2) into the third equation of (3.7a), we find that
Df(Qo(T)) AT + G3(7,u,v,w,€) =0 (7.21)

where G is defined by (7.15) with f replaced by f;.

Note that from the derivations of the equations (7.17), (7.20) and (7.21), we see that the
functions Gy, ¢ = 1,2, 3, are well defined on D x (0,€e5]. Now we show that there exist matrices
Ay (1), A2(7) and B,(r) which are uniformly bounded on 0 < 7 < T/e and for which the
equations (7.17), (7.20) and (7.21) simplify considerably. For this, we write

D f(Q())A(TIY — Al(T)u
= [D2£2(Q(7)) + Dy £2(Q())AL(7) + D: f2(Qo(r) Az(7) — AL(7)]u
+ [Dyf2(Q0(T)) + D, f2(Q(7))B1(7)lv + D, fr(Q{r))w
d D () Al
= [Dz f3(Q(7)) + Dy f3(20(7))A1(7) + D, f3(Qo(7) A2 (7)]u (7.22)
+ [Dy £2(0(7)) + D= f3(Qo(r)) Bi(7)]v + D fs(Qo{T))w,

and use the equations

D, £2(Q0(7)) + Dy f2(R(7))A1 (1) + D= f2(Q0(7)) Ao(r) — A)(r) =0,
D. f3(Q0(7)) + Dy fs(Q(7))A1(7) + D: f3(Q(7)) A2(7) = 0, (7.23)
Dny(QU(T)) + sza(QO(T))BI(T) =0,
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to determine A,(7), A2(7) and B,(7). In order to show that the solutions A;(7), A2(r) and
By(7) of (7.23) are uniformly bounded for 0 £ 7 < T'/¢, notc first that the third equation of
(7.23) gives

By(r) = ~ (D, f5((r)) " Dy f2(Q0())

which is obviously bounded for 0 < 7 < T/e. Indeed, there is a constant C, independent of r
and ¢, such that ||By(7)|| < C for all 7 > 0. The second equation of (7.23) now provides that

Az(7) = = (D: fo(Q(1))) ™" (Dx fo(Qo(7)) + Dy fa( (1) Ax (7). (7.24)

By substituting this into the first equation of (7.23) we obtain that

= () = MEIA() +C(7) (7.25)

where

M(7) = Dy f2(Q(7)) — D; f2(Q0(r)) (D f3(Q(7))) Dy f3(0(7)),
C(7) = Dy f2((7)) = D f2(Q(7)) (D f3(2(7))) D: f3(Qo(7)),
Because of

lim M(r)= B(0)

and R(A(B(0))) < 0 for all eigenvalues A(B(0)) of B(0), there exists a 79 > 0 such that all
cigenvalues of M(7) remain strictly in left half plane for 7 > 7,. Thus if 4,(7) is chosen as the
solntion of (7.25) that satisfies the initial condition A4,(0) = I, then Lemma 5.1 ensures that
Aj(7) is uniformly bounded in 7, 7 > 0. With this A,(7) it follows directly from (7.24) that
Ay(7) is uniformly bounded in 7 as well.

Note that

N
u{0,¢) = a(0,€) — Ea,(O)e'
r=0

N
=€) =€ (&)= Y (&~ ED)e"
r=0

= 6,(c) = O(eN ), (7.27a)
v(0,6) = B(0,¢) — EN: Br(0)e” — A1(0)u(0, ¢)

= 0y(e) = 0'<=e0”+' ), (7.27b)
w(0, ) = ¥(0,¢) — XN:%(O)fr = Ax(0)u(0.¢) — By (0)(0, ¢)

=f3(¢) = (;(i(;”"‘ )- (1.27¢)
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Therefore, with these specially chosen A1(7), 42(7) and B,(r), it follows from (7.17), (7.20),
(7.21) and (7.27a,b,c) that (3.7) becomes

du

e e(Ci(t)u+ Li(m)v + Er(7)w) + €G1 (e, u, v, w, T)
9 M)+ Ba(r)o + Gale, 0, 0,7)
0 = Es(7)w + Ga(e, u,v,w,T) (7.28)

u(0,€) = By(e) = O(eM 1),
v(0,€) = Ga(e) = O(M™*),
w(0,€) = G5(e) = O(eN ).

This is equivalent to the following integral equation

w(r,6) = (10,900 + [ 21,3, JelLa(5)s(5,6) + B (5ol
£ Galeruls,€),v(s, ), (s, €),5))ds,

vl = U (e)+ ¥(r) [ 9Bl ) (7.29)
+ Gale, (s, €),0(s, ), (s, €),8))ds,

w(r,€) = ~ By (r)Gs(e, u(r, €),0(r, ) w(r, ), 7),

where

Ci(1) = D fi{Q(7)) + Dy f1(Q()) A1 (7) + D, f1(Qo(7))A2(7),
Li(7) = Dy fi((7)) + D2 f1(Qo(7)) Ba (7},
Ei(r) = D.fi(Q(7)), Ea(r) = D.f2(Q(7)), Es(7) = D.fs((T)),

and @(r, s, €) satisfies

d®(r,s,€) _
— = eC1(1)®(7, 3,¢€) (7.30)
&(7,5,6)|r=s =1
while ¥(7) is a solution of following system
av
T - MY (7.31)
¥(0)=1I

It turns out that &(7,s,€), ¥(r) are uniformly bounded for 0 < s < 7 < T/e and 0 < € < €.
Indeed, because C)(7) is uniformly bounded for all 7 > 0, there exists a constant C' > 0 such
that |C1(7)] £ C for all r > 0. Thus from

®(r,s,6) =1+ e/ Cir{AN)®(A, s, €)dA
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it follows that

|| ®(r,s, el <1+ EC/ 1B(A, s, €)f|dA
which by Gronwall's inequality implies that
|B(r,s,€)]| < €= < T (7.32)

forall 0 € s <1 < T/e. Hence &(r,s,¢€) is uniformly bounded for 0 < s < v < T/e.
For the matrix M(7), there exists a positive number g such that

RAM)) < —p, 7270
holds for all eigenvalues of M(7). Hence by Lemma 5.1 ( with e =1 ) it follows that
1T(r)(T(s)) | < Kem#r=)/2 (7.33)

holds for 0 < s < r, where I is a constant which is independent of s, 7.
Now we show that (7.29) has a unique solution (u,v,w) for which

u(r,€) = O(eN¥1), v(r,€) = O(eN ™), w(r €) = O(eNHY), (7.34)

uniformly for 0 < 7 < T/e.
With the change of variables

(t, €) = u(t/e,e),
(t €)= v(t/e €),
w(t, e) = w(t/e, €),

T=tle, a=3sfe,

the constrained integral equation (7.29) becomes
t
a(t, ) = (,0,¢)8,(¢) + / D(t, s, €)(L1(s'/e)(s', €) + E (' fehi(s', €)
0
+ Gi(e (s €), (', €), (s’ €), 8))ds’
. . t e T
i(t,€) = B(t, e)a(e) + / MTM(EZ(S'/%(S', o)
[}

+ Gale,it(s' ), b(s', €),(s" ), s'))ds'
i(t,€) = —E; (t/€)Gale, it €), (1, €),10(t, €), 1)

where

B(t,s' €)= B(t/e, s /e, €)
B(t,€) = V(t/e)
Gi(e, i1, 0,10,1) = Gie, u,v,w,tfe), fori=1,23.
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Because of (7.33) the kernel in the second equation in (7.35) satisfies
18, F (", o)lf < Ke™ ™52 (7.36)

forall 0 < s’ <t < T. Moreover &(t, s'y€), Li(s'/¢€), Ei(s'[e€), i = 1,2, 3, are uniformly bounded
in0<s' <t<T. Since Gy, i = 1,2,3, satisfy (7.14a,b), we see that é;(e,ﬂ,ﬁ,ﬁ),t), 1=1,2,3,
satisfy the Condition (N). Now, with the same notation as in (5.15) we rewrite (7.25) in
the form of constrained systems of integral equations as the one in [Ya2]. Then Theorem 1,2
in [Ya2] guarantee that the system (7.35) has a unique solution (u(f, e),v(th, e),w(f, €)) on the
interval 0 < t < T for which

a(t,e) = O(N T
8(t,€) = O(eM+?) ase€— 0,
B(t, €) = O(eV 1)

uniformly on 0 < t < T. Hence the system (7.29) has a unique solution (u(7,€),v(r,€),w(7,¢€))
on the interval 0 < 7 < T/e which satisfies the estimate (7.34). This completes the proof of
Theorem 7.1. g
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